基于FPGA的數字磁通門傳感器系統(tǒng)設計和實現(xiàn)
2011年08月02日14:53
  摘要:針對傳統(tǒng)磁通門信號處理電路中模擬元件的缺點,設計一種基于現(xiàn)場可編程門陣列(FPGA)的數字磁通門系統(tǒng)。整個系統(tǒng)采用閉環(huán)結構,由激勵產生模塊、信號處理拱塊和負反饋模塊組成。外圍模擬電路用高速D/A、A/D芯片取代,有利于系統(tǒng)溫度穩(wěn)定性的提到。FPGA內的數字邏輯實現(xiàn)了磁通門信號解算、激勵正弦信號發(fā)生、D/A、A/D輸入/輸出串并轉換的功能,首先用硬件描述語言(HDL)設計并仿真,然后下載、配置到FPGA中,調試完成后進行實驗,通過實時處理雙鐵芯磁通門傳感器探頭輸出信號對系統(tǒng)進行測試。實驗結果證實了系統(tǒng)功能的正確性。閉環(huán)結構的采用提高了系統(tǒng)信號梯度線性度,與模擬系統(tǒng)相比,基于數字邏輯的設計溫度性能更穩(wěn)定,更易于小型化,可移植性更強。
  0 引言
  磁通門傳感器最早于1935年發(fā)明并投入應用,用于靜態(tài)或者低頻變化的弱磁檢測,擁有其他磁敏元件難以媲美的靈敏度和可靠性,在磁場測量領域一直占據著不可替代的位置。磁通門傳感器適用于地磁或人體磁場的檢測,在航空、航天、地質勘探、醫(yī)療衛(wèi)生等領域有著廣泛的應用。
  磁通門傳感器探頭通常采用類似于變壓器的雙鐵芯結構,利用軟磁鐵芯變化磁導率的特性將被測磁場調制成激勵信號的偶次諧波。信號處理系統(tǒng)對探頭輸出加以處理,從中提取與被測磁場大小相關的信號,轉換成直流量并輸出。
  傳統(tǒng)的磁通門信號處理電路采用模擬元器件,溫度性能嚴重地受到影響,且很難小型化,可移植性也很差。與之相比,現(xiàn)代數字磁通門系統(tǒng),溫度性能穩(wěn)定,體積小,可移植性強。根據應用的具體情況,可選的實現(xiàn)方式多樣,有單片機、可編程數字邏輯,或數字信號處理(DSP)芯片等。
  FPGA(Field Programmable Gate Array)是一種高速的可編程邏輯芯片,具有其他設備難以比擬的靈活性,其大部分引腳的功能、內部電路結構完全由用戶根據需要定義。FPGA器件具有很高的實用價值,一方面可以作為專用集成電路的替代品,直接在最終產品中使用,另一方面,也可以在專用集成電路開發(fā)流程中,做行為驗證工具。
  在本文中,描述了一種基于FPGA的磁通門系統(tǒng)的實現(xiàn),系統(tǒng)采用閉環(huán)結構,對磁通門傳感器探頭輸出的數據進行實時處理,提取出反映被測低頻磁場大小的直流信號。
  1 磁通門系統(tǒng)結構和工作原理
  如圖1所示,整個系統(tǒng)的硬件包括磁通門傳感器探頭,DAC,ADC和FPGA。功能上可分為傳感器激勵源、磁通門信號解算、負反饋回路三個模塊。

  FPGA內的正弦激勵發(fā)生電路和外部DAC一起構成傳感器激勵源模塊。高速ADC和FPGA內的A/D接口、相敏整流、低通濾波電路構成磁通門信號解算模塊。積分放大、D/A接口、高速DAC,以及反饋網絡共同構成了負反饋模塊。
  系統(tǒng)工作時,在激勵信號的驅動下,磁通門探頭的感應線圈感應環(huán)境磁場大小,產生磁通門信號,經隔直濾波后通過高速ADC芯片轉換成串行數據送FPGA的處理。在FPGA中,ADC芯片采集到的串行數據先轉換成并行數據,然后通過相敏整流、低通濾波后得到直流信號。低通濾波的結果積分放大后經D/A接口轉換成串行數據送高速DAC芯片轉換成模擬信號,經反饋電阻反饋到磁通門探頭的補償線圈(即感應線圈),抵消環(huán)境磁場。
  由于采用閉環(huán)結構,前向通道上積分放大環(huán)節(jié)的增益可視作無窮大,根據自動控制原理,整個系統(tǒng)是無差系統(tǒng),傳感器探頭實際上工作在“零場”條件下,反饋電流產生的磁場和環(huán)境磁場大小相的方向相反,D/A的前端信號,即積分放大環(huán)節(jié)的輸出反映被測磁場的大小。整個系統(tǒng)的信號梯度主要取決于反饋系數的大小,具有良好的線性度。
  2 磁通門信號的特點和處理方法
  磁通門系統(tǒng)的核心是信號處理電路。
  磁通門傳感器探頭輸出的偶次諧波(以二次為主)是有用的磁通門信號,而其他頻率的信號都是有害噪聲。在實際應用中,通常采用“相敏整流-低通濾波”方法處理磁通門信號。首先用相敏整流進行頻譜的調整,通過采用與二次諧波同頻率的方波基準乘傳感器探頭的輸出,將二次諧波磁通門信號轉換為直流分量,然后用低通濾波濾除其他頻率分量,得到反映被測磁場大小的直流量。

  低通濾波器輸出是相敏整流結果的直流分量,與磁通門傳感器探頭輸出的二次諧波的幅值線性相關,反映被測磁場大小。
  3 硬件電路設計
  在該設計中,F(xiàn)PGA芯片選用Altera公司CYCLONEⅡ系列的EP2C35F626C5,工作速度快,可定義引腳豐富,邏輯單元數量可觀,性價比高。FPGA的工作時鐘為50MHz。
  磁通門激勵起到驅動傳感器工作的作用,由D/A模塊轉換FPGA輸出的正弦數字信號產生;本設計中,激勵頻率為3.051kHz,是FPGA工作時鐘的64×256分頻,速度相對較低,且精度要求不高,故DAC采用12位并口DA1210芯片。

免責聲明:本文僅代表作者個人觀點,與自動化網無關。對本文及其中內容、文字的真實性、完整性、及時性,本站不作任何保證或承諾。請讀者僅供參考。