基于GMR傳感器陣列的生物檢測研究-測試測量
基于GMR傳感器陣列的生物檢測研究 (1)2011-05-27 22:29:12來源:鄭飛雁 楊陳 王豪才 蘭中文 張力
0 引 言
生物傳感器的研究具有巨大的應(yīng)用前景,近年來,隨著電子自旋現(xiàn)象的發(fā)現(xiàn),結(jié)合了半導(dǎo)體微電子工藝制備的GMR設(shè)備,在生物檢測領(lǐng)域引起了人們越來越濃厚的研究興趣,使其成為傳統(tǒng)生物檢測方法的替換方案之一。由于其獨(dú)特的物理特性,GMR傳感器比電子傳感器更靈敏、可重復(fù)性強(qiáng),具有更寬的工作溫度、工作電壓和抗機(jī)械沖擊、震動的優(yōu)異性能,而且GMR傳感器的工作點(diǎn)也不會隨時間推移而發(fā)生偏移。GMR傳感器的制備成本和檢測成本低,對樣本的需求量很小。由GMR傳感器組成的陣列,還可以結(jié)合現(xiàn)有的IC工藝,提高整體設(shè)備的集成度,進(jìn)行多目標(biāo)的檢測。同時,對比傳統(tǒng)的熒光檢測法,磁性標(biāo)記沒有很強(qiáng)的環(huán)境噪聲,標(biāo)記本身不會逐漸消退,也不需要昂貴的光學(xué)掃描設(shè)備以及專業(yè)的操作人員。因此,無論是傳感器本身的性能,還是磁性標(biāo)記的特點(diǎn),都決定了GMR傳感器陣列在生物檢測領(lǐng)域的研究具有較高的應(yīng)用價值和實踐意義。
1 巨磁阻陣列傳感器生物檢測的基本原理
1.1 巨磁阻(GMR)效應(yīng)
1988年派瑞松大學(xué)的研究人員發(fā)現(xiàn)了GMR效應(yīng),這是一種在鐵磁性層與非鐵磁性層交替疊置的結(jié)構(gòu)中觀測到的量子效應(yīng),是指某些磁性或合金材料的磁電阻在一定磁場作用下急劇減小,而Aρ/ρ急劇增大的特性,一般增大的幅度比通常的磁性與合金材料的磁電阻約高10倍。GMR效應(yīng)的理論很復(fù)雜,許多機(jī)理至今還不清楚,目前普遍接受的解釋是兩流模型,如圖1所示。多個鐵磁層中的磁矩方向由施加的外磁場控制,當(dāng)鐵磁性層的磁矩反平行排列時見圖1(a),載流子受到的自旋散射最大,多層膜電阻最高;當(dāng)鐵磁性層的磁矩平行排列時見圖1(b),載流子受到的自旋散射最小,多層膜的電阻最低。
點(diǎn)擊看大圖
目前,按其結(jié)構(gòu)、GMR材料可分為具有層間偶合特性的多層膜(例如Fe/Cr)、自旋閥多層膜(例如FeMn/FeNi/Cu/FeNi)、顆粒型多層膜(例如Fe-Co)和鈣鈦礦氧化物型多層膜(例如AMnO3)等。
1.2 巨磁阻(GMR)的電子特性
圖2是一個典型的多層GMR材料在外加磁場下的電阻變化情況。圖2中的輸出表明,無論是正向還是反向的外加磁場變化,都能帶來相同的磁阻變化,也就是說GMR效應(yīng)是全極性的。曲線的斜率體現(xiàn)了磁性敏感程度,通常以V(mV)/Oe為單位。當(dāng)阻值不隨磁場繼續(xù)變化時,磁性材料就達(dá)到了其磁性飽和區(qū)。兩條曲線中的偏移是磁性材料的磁滯導(dǎo)致的,從零磁場到飽和磁場所帶來的阻值變化就稱為磁阻。
點(diǎn)擊看大圖
[1][2] [3] [4] [5]
評論排行